
CS395T: Foundations of
Machine Learning for
Systems Researchers
Fall 2025

Lecture 6:
Reinforcement Learning &
Markov Decision Processes
(MDPs)

Reinforcement Learning

Standard presentations: agent takes actions and is rewarded
by environment; like training a dog

Our view:
Optimal control: sequence of actions under uncertainty to
reach a goal while optimizing some objective function
Example: moon shot vs. gun shot

• Goal: reach the moon
• Burn minimal amount of fuel
• Uncertainty: imperfect modeling of rocket, gravitation, etc.
• Solution: series of mid-course corrections

Reinforcement learning:
• Optimal control when you have little to no knowledge of the

dynamics of system (not even Newton’s Laws or gravitation!)
• However, you are allowed to perform many experiments to

build a working model of the dynamics

Atari Pong

Traditional program to play Pong

UP

DOWN

Possible state features:
• Position of paddle A
• Position of paddle B
• Position of ball
• Direction of ball
• …

Set of rules
(state à action)

State transition system
Need to design set of state features
Designing action rules requires knowledge of collision dynamics

Solving Pong with NNs

Pong from Pixels (Andrej Karpathy) – Pong in <150 LOC

https://karpathy.github.io/2016/05/31/rl/

Organization

Background: Discrete-time Markov process
Markov Decision Processes (MDP):

• Adds actions and rewards to Markov process model
• Key abstraction for RL

Time horizon
• Episodic task: agent stops after H time steps
• Continuous tasks: no termination

Policy and policy optimization
• Policy tells agent what action to take at each step
• Policy optimization problem: what policy maximizes expected reward?

Solving policy optimization
• Value iteration: dynamic programming, Bellman iteration
• Policy iteration: search over space of policies
• Easy to understand if we use MDP transition diagrams

Andrei Markov (1856-1922)

Discrete-time Markov Process

• Set of agent states: {A,B,C}

• Discrete-time

• Agent starts in some state and makes transitions probabilistically between states at each time
step
• Markovian: transition probabilities depend only on current state

• Transition matrix T(i,j) = probability of transition from state i to state j

• Tk: transition probabilities after k steps

A B

C

0.4

0.35

0.55
0.7

0.45

0.3

Transition matrix T =

A B C

A
B
C

0.25

Markov Decision Process (MDP)

• Adds actions and rewards to Markov processes

• In each state, agent performs action, and
transitions to another state probabilistically

• Probabilistic transitions model effect of
environment on outcome of action (e.g. wind)

• Reward for transitions

• Policy 𝝅: what action to take at each step

• Optimal policy maximizes expected reward for task
• Policy optimization: find optimal policy 𝜋∗

Sa

Sb

Ax

Ay

Ax

States Q-nodes
(0.8, 3.2)

(0.2, -4.9)

(1.0, 2.3)(1.0, 2.1)

States S = {Sa, Sb}
Actions A = {Ax, Ay}
Q-nodes: S x A (<state, action> pairs,

used for book-keeping)
Transition edges: dotted edges (labeled

by probability and reward)

MDP Transition Diagram

Sa

Sb

Ax

Ay

Ax

States Q-nodes

Sa

Sb

Ax

Ay

Ax

States
t=1

Q-nodes
t=1

Sa

Sb

Markov Decision Process MDP Transition Diagram (one-step)

States
t=0

Game plan for policy optimization

Tasks:
 Episodic tasks: H = 1
 Episodic tasks: ¥ > H > 1
 Continuous tasks: H = ¥

Algorithms:
 Value iteration
 Policy iteration

MDP Example:
H =1

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

Ay

Ax

Ay

Ay

States Actions

(0.1,10)

(0.9,-2)

t=0t=1

(1.0,3)

Q-nodes

probability
reward

Policy p: S ®A

Policy optimization by searching policy space

• Example: focus on Sa (other states similar)
• Policy p1: at Sa, take Action Ax

• Expected reward = (0.1*10+0.9*(-2)) = -0.8
• Policy p2: at Sa, take Action Ay

• Expected reward = 1.0*3 = 3
• Policy p2 is optimal

• In general
• Policy iteration

• Finite number of policies: |A||S|

• Search space of policies
• Policy evaluation: how good is a given policy?

• Compute expected reward

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

Ay

Ax

Ay

Ay

States Actions

(0.1,10)

(0.9,-2)

probability
reward

t=0t=1

(1.0,3)

Terminology

Sa Sa

Sb

Ax (0.1,10)

(0.9,-2)

t=0t=1

We are computing a valuation V1
p(Sa)

• Expected reward at Sa at time 1 under policy p

V1
*(Sa): Valuation under optimal policy (= 3.0 for our problem)

Notation extends to Q-values: Q1
p(Sa,Ax)

State

Time-step

Policy

Another solution: Value iteration (Expectimax)

Bottom-up propagation of values
• Boundary (t=0) node values = 0
• Transfer functions on

(state x action à state) edges
• Add expectation to boundary value

• Confluence operator at Q-nodes: sum
• Confluence operator at states: max

If terminal states have rewards
• Use those values as boundary node values

Optimal policy: read oW from Q values
Like minimax in game trees

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

t=0t=1

max S 0

0

0

0

-0.8

3
3

(0.1,10)

(0.9,-2)

(1.0,3)

Putting it all together (H=1)

Sa Sa

Sb S
b

Sc Sc

Sd Sd

Ax

Ay

t=0t=1

max S 0

0

0

0

-0.8

3
3

(0.1,10)

(0.9,-2)

(1.0,3)

Value iteration:

Policy evaluation: p: S ® A

Multiple time-steps: ideas carry over in obvious way

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

Ay

Ax

Ay

Ay

t=0t=1

Sa

S
b

Sc

Sd

Ax

Ay

Ay

Ax

Ay

Ay

t=2

Policy: S x T à A (system is still Markovian!)

Value Iteration
(H=finite)

Bottom-up computation in transition diagram

Read off optimal policy from Q*-values

Dynamic
Programming

(Bellman)

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

t=0t=1

Sa

Sb

Sc

Sd

Ax

Ay
Ay

Ay

t=2

max max

S

S

S

S
S

Policy Iteration
(H=finite)

Search over set of policies: |A||S|xH

Policy evaluation: p: SxT®A
• Specialization of value iteration for action p(s,t)

Sa Sa

Sb Sb

Sc

Sd

t=0t=1

Sa

Sb

Sc

Sd

t=2

S

S

S

Discount
Future rewards are discounted by a factor
of 0 £ g < 1 for each time step
Value iteration:

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

t=0t=1

Sa

Sb

Sc

Sd

Ax

Ay
Ay

Ay

t=2

add add

add

add

max max

Continuous Tasks

Infinite time horizon: agent performs actions indefinitely (H → ∞)
Policy p: S à A

• Action at state is not time-dependent since time is unbounded and system is
Markovian
• Compare with episodic tasks: p: SxT à A

• Finite number of policies: |A||S|

Discount: 0 £ g < 1
Intuition for valuations:

• Unbounded number of unbounded paths from each state
• Each (unbounded) path has a finite total discounted reward

• Assume there is a maximum one-step reward (Rmax)

• Discount gives you an upper bound on total discounted reward of path (!!"#"#$)

Value Iteration (H = ¥)

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay
addmax

g

• Fixpoint equation:

• Does it have a solution? Unique solution?
If so, how do we compute it?
• Use Banach-Cacciopoli fixpoint theorem

Contraction operator V ® V in (Ân, maxnorm) where n = #states

Value iteration: solving fixpoint equation

Sa Sa

Sb S
b

Sc Sc

Sd Sd

Ax

Ay
addmax

g

• Fixpoint equation:

• Iterative solution: perform value
iterations to convergence

V0V1V2...

Policy Iteration (H = ¥)

Policy iteration
Policy evaluation p: S ® A

• System of linear equations

• Solve using direct methods like LU factorization or iterative methods

Improving efficiency of policy iteration: can we avoid evaluating
every policy in space of policies?
Policy improvement

• Intuition: greedy improvements to current policy
• Will find optimal policy without searching entire policy space

Policy Improvement

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay
S(r2,p2)

Bellman
half-step

(r1,p1)

(r3,p3)

g

Given policy p1, compute Vp1 by solving
linear system
Take “Bellman half-step” and compute
associated Qp1 values
At each state Sa, examine Qp1 (Sa,*) values
to see if switching to another action
improves value of Sa “locally”

• If switching does not improve value of any
state, p1 is optimal policy

• Otherwise switch to better action at one or
more states (call resulting policy p2), compute
Vp2 and repeat

Guarantee: procedure terminates and finds
optimal policy

• Each switch finds strictly better policy and set
of policies is finite

Summary

H=1
Value Iteration: Policy Evaluation:

H=finite
Value Iteration: Policy Evaluation:

Continuous
Value Iteration: Policy Evaluation:

Other Resources

• Book on reinforcement learning by Barto and Sutton
• Github repo with well-written tutorials on RL with code and

demos from Tim Miller, University of Queensland
• https://gibberblot.github.io/rl-notes/single-agent/value-

iteration.html
• David Silver’s lecture series (DeepMind)

• https://www.youtube.com/watch?v=lfHX2hHRMVQ
• Pieter Abbiel’s course (Berkeley)

• https://www.youtube.com/watch?v=2GwBez0D20A

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=2GwBez0D20A
https://www.youtube.com/watch?v=2GwBez0D20A

