CS395T: Foundations of
Machine Learning for

Systems Researchers
Fall 2025

Lecture 6:

Reinforcement Learning &
Markov Decision Processes
(MDPs)

Reinforcement Learning

Standard presentations: agent takes actions and is rewarded
by environment; like training a dog

Our view:

Optimal control: sequence of actions under uncertainty to
reach a goal while optimizing some objective function
Example: moon shot vs. gun shot

* Goal: reach the moon

¢ Burn minimal amount of fuel

* Uncertainty: imperfect modeling of rocket, gravitation, etc.
Solution: series of mid-course corrections

Reinforcement learning:

* Optimal control when you have little to no knowledge of the
dynamics of system (not even Newton’s Laws or gravitation!)

* However, you are allowed to perform many experiments to
build a working model of the dynamics

environment

actions

rewards
——
a : observations d a

Entry —
Interface (EI)

_ Launch /
> s

Trans Lunar
Injection (TLI)

cc-2 MCCS
Mid Course MCC-2

Corraction-1

(MCC-1)

Earth Parking Orbit ~ 2.5 hours LOI = Lunar Orbit Insertion (57 x 168 nm)
Time To Moon ~ 75 hours DOI - Descent Orbit Insertion (7 x 57 nm)
Lunar Parking Orbit ~ 90 hours CIRC ~ Circularz ation (60 x 60 nm)
Luna Surface Stay ~ 33.5 hours TEI - Trans Earth Injection

Time To Earth ~ 73 hours Not to Scale

Figure 4. Nominal Apollo 13 mission profile.!?

Atari Pong

Traditional program to play Pong

Set of rules
(state = action)

Possible state features:
* Position of paddle A

* Position of paddle B

* Position of ball

* Direction of ball DOWN ‘

UP

State transition system
Need to design set of state features
Designing action rules requires knowledge of collision dynamics

Solving Pong with NNs

Pong from Pixels (Andrej Karpathy) - Pongin <150 LOC

raw pixels hidden layer

https://karpathy.github.io/2016/05/31/rl/

Organization

Background: Discrete-time Markov process

Markov Decision Processes (MDP):
* Adds actions and rewards to Markov process model
» Key abstraction for RL

Time horizon

* Episodic task: agent stops after H time steps
* Continuous tasks: no termination

Policy and policy optimization Andrei Markov (1856-1922)
* Policy tells agent what action to take at each step
* Policy optimization problem: what policy maximizes expected reward?

Solving policy optimization
* Value iteration: dynamic programming, Bellman iteration
* Policy iteration: search over space of policies
* Easyto understand if we use MDP transition diagrams

Discrete-time Markov Process

- S 04 A B C
.03 __ N
@: ---- 0.0 03 0.7\ A
! (3§7 0.35 TransitionmatrixT= [025 04 0.35] B
\ /1055 0.45 0.55 0.0/ C

Set of agent states: {A,B,C}

Discrete-time

Agent starts in some state and makes transitions probabilistically between states at each time
step

* Markovian: transition probabilities depend only on current state

Transition matrix T(i,j) = probability of transition from state i to state j

Tk: transition probabilities after k steps

Markov Decision Process (MDP)

« Adds actions and rewards to Markov processes States Q-nodes

* Ineach state, agent performs action, and
transitions to another state probabilistically

* Probabilistic transitions model effect of
environment on outcome of action (e.g. wind)

e Reward for transitions

* Policy mr: what action to take at each step States S = {Sa, Sb}
Actions A = {Ax, Ay}

Q-nodes: S x A (<state, action> pairs,
used for book-keeping)

Transition edges: dotted edges (labeled
by probability and reward)

* Optimal policy maximizes expected reward for task
* Policy optimization: find optimal policy 7*

MDP Transition Diagram

Markov Decision Process MDP Transition Diagram (one-step)
States Q-nodes States Q-nodes States
t=1 t=1 t=0
Sa AX TSI7"-~_ Sa
\\ \’
\
\ 1
Ay =~ SO \ /
N (I
\ |4
120
Sb AX -\ sb

Game plan for policy optimization

UP DOWN upP uP DOWN DOWN DOWN UP WIN
Tasks: DOWN g UP UP DOWN up uP LOSE
E |SOd |C taSkS: H = 1 UP UP DOWN DOWN DOWN DOWN UP LOSE
p . . DOWN UP UP DOWN UP UP WIN
Episodic tasks: 00> H > 1

Continuous tasks: H =00

Algorithms:

Value iteration
Policy iteration

MDP Example:

H =1

probability

States Actions
g reward
&
Sa A “3(0:4,10) *%
Ay (0«9\: 2)/,
(1.0,3) 57
W:\A\-"‘ __\\\Sb
\/ ‘,f,.
Sc Ax ’) aSC
@ P -0
Ay Y
d \ Sd
S @

Q-nodes

Policy m: S A

Policy optimization by searching policy space

probability
States Actions reward ..
Ax K & * Example: focus on Sa (other states similar)
Sa ~(0-1,10) Sa i .
\\09 2‘*;. * Policy m4: at Sa, take Action Ax
Ay (‘1\.053;‘{-}}" » Expected reward = (0.1*10+0.9*(-2)) =-0.8
sb A _‘_‘:g) * Policy m,: at Sa, take Action Ay
P * Expected reward = 1.0*3 = 3
* Policy 7, is optimal
se Ax N Lse y o P
® A * In general
Ay X

* Policy iteration
* Finite number of policies: |A|S!

2]
o
w
o

< ,
\\
[N
\ Ay
\ N
\}

\
\

e Search space of policies
* Policy evaluation: how good is a given policy?
 Compute expected reward

t=1 t=0

Terminology

Policy
State
We are computing a valuation V{‘@)/ Time-step

* Expected reward at Sa attime 1 under policy nt
V,"(Sa): Valuation under optimal policy (= 3.0 for our problem)
Notation extends to Q-values: Q,™(Sa,Ax)

Another solution: Value iteration (Expectimax)

t=1

Ax - 7\(\0-1 ,10)
max RO S
Ay (0:9,-2)

Qi(Sa, Ay)"
(1.0,3)

t=0

Bottom-up propagation of values
* Boundary (t=0) node values =0

* Transfer functions on
(state x action - state) edges

* Add expectation to boundary value

e Confluence operator at Q-nodes: sum
* Confluence operator at states: max

If terminal states have rewards
* Use those values as boundary node values

Optimal policy: read off from Q values
Like minimax in game trees

Putting it all together (H=1)

Vi (Sa) Value iteration:
0.8
S Ax - (0.1,10) B
. . max 72 \\\‘%ao V0*<3> =0 (VS € S)
WO 09 Qi(5,0) = S P(s,0,8) « (R(s,0,5) + Vi (5)
%0 QT(Sa,Ay)‘\\\ \‘io Vi(s) = maz, Qi(s,a)
(1.0,3)
Sc Sc Policy evaluation: ©: S—> A
@ v @0 y
Vr(s)=0 (¥s€S)
& ®% Vi (s) = By P(s, 7(s), ') * (R(s, 7(s), ') + Vir(s")

t=1 t=0

Multiple time-steps: ideas carry over in obvious way

Policy: SxT 2> A (system is still Markovian!)

Value lteration

(H=finite)

Q5(Sa, Ax)

i max (Quality) i max

a AXx Ax
Vy(Sa) x T
(Valuation] Ay \:\-Z \\\\\ i Ay s

e =
_.gég____

~
N
~+

]
Bottom-up computation in transition diagram
VO*(S) =0 (Vs€S) Dynamic
Qi (s,a) = By P(s,a,8") * (R(s,a,8') + V;L1(s)) | Programming
Vi'(s) = mazq Q3 (s, a) (Bellman)

Read off optimal policy from Q*-values

Vi (Sa) #*:::: “““““““““““ §Eé'=:3:::::\ """"""""""""" ’&

(Valuation} X
I =~

Policy Iteration ¢ i
(H=finite) 02 o1 0

Search over set of policies: |A|ISXH

Policy evaluation: m: SXT—>A
* Specialization of value iteration for action r(s,t)

Vit(s)=0 (VseS)
Vi(s) = B P(s,7(s, 1), ') = (R(s, 7 (s,1),8') + VI, ("))

1 Q3(Sa, Az) 1
i (Quality) i

Vi (Sa) 3%2 \\aéla"“‘~-%:§\“\éi@a“~
(Valuation} Ay SN i Ay

i
7 P
s
o
Q
‘l
,l
»
PO PN Y

N
~

Discount

~+

Future rewards are discounted by a factor
of 0 <y <1 foreach time step

Value iteration:
Vi(s)=0 (VseSf)
Qi (s,a) =Xy P(s,a,s') * (R(s,a,s") +~vx V7 {(s))
Vi (s) = maxq(Q¢ (s, a))

Continuous Tasks

Infinite time horizon: agent performs actions indefinitely (H — o)
Policym:S—> A

* Action at state is not time-dependent since time is unbounded and system is
Markovian

* Compare with episodic tasks: »: SXT 2> A
* Finite number of policies: |A|l®!

Discount: 0 <y <1 —
Intuition for valuations: /

* Unbounded number of unbounded paths from each state

* Each (unbounded) path has a finite total discounted reward
* Assume there is a maximum one-step reward (R,,4)

* Discount gives you an upper bound on total discounted reward of path (I;'Z—a;)

(is0) =t

Value lteration (H = o)

¢

R

ax
Ay

Q*(Sa, Ax)

(Quality)

add -

* * Fixpoint equation:
i V*(s) = mgxz P(s,a,s") [R(s, a,s') + 'yV*(s')}

i * Does it have a solution? Unique solution?
3'0 If so, how do we compute it?

: * Use Banach-Cacciopoli fixpoint theorem
@'d

V*(s) = m‘?xZ’ P(s,a,s') [R(s, a,s') + ny*(s')]

O, | v |

Contraction operatorV.— Vin (R", maxnorm) where n = #states

Value iteration: solving fixpoint equation

----.g.--- Kp- -~

@l

A

*(Sa, Az)
(Quahty)

* Fixpoint equation:
»%‘ maxZP s, a, s)[R(s,a, s') -}—’YV*(S;)]

t: * lterative solution: perform value
$c iterations to convergence

Vo(s) = arbitrary value (Vs € S)

d Qils,a _ZS/P(S,G,S/)*(R(S,a,sl)-l-')/* H
@ maz,(Q(s,a))

VoV, Vg

Policy Iteration (H = o)

Policy iteration

Policy evaluation =: S —> A
* System of linear equations

V7(s) =Xy P(s,m(s),s) * (R(s,m(s),s") +vxV™(s))
* Solve using direct methods like LU factorization or iterative methods
Vit (s) = arbitrary value (Vs € S)
Vi (s) = Zg P(s,7(s), 8') # (R(s,m(s),8") + v VLy(s))
Improving efficiency of policy iteration: can we avoid evaluating
every policy in space of policies?

Policy improvement
* Intuition: greedy improvements to current policy
* Will find optimal policy without searching entire policy space

Policy Improvement

Given policy 77, compute V* by solving

: Q™! (Sa, Ax) : linear system
' Ax < (Mp7) ¢ Take “Bellman half-step” and compute
T b3 AN B N T .
Q™(Sa, 4y) & R \E@ ‘% V™i(Sa) associated Q™' values

1 \ AN s 1 .

| Q™M ($a4y) At each state Sa, examine Q* (Sa,*) values
V™ (Sh) $’ P ‘$’ v=i(sp) 1o see if switching to another action

: : "2@ i improves value of Sa “locally”

' . ' * If switching does not improve value of any
V(Se) ic : | $C V7(Se) state, 71 is optimal policy

I i * Otherwise switch to better action at one or

; o mare states (call resulting policy 72), compute
vei(sa) & @ v (sq) V72 and repeat

! Bellman iy Guarantee: procedure terminates and finds

half-step optimal policy

* Each switch finds strictly better policy and set
of policies is finite

Summary

H=1

Value Iteration: Policy Evaluation:
Vi(s)=0 (VseS)

Vii(s)=0 (VseS)
e G V() = Sy (s, n(s),) + (R(s, m(s),) + Vi (5)

H=finite

Value Iteration:

Vo(s)=0 (VseS)

Qi (s,a) = Xy P(s,a,8") % (R(s,a,8') + Vi1 (5"))
Vi (s) = maz, Q5 (s,0)

Policy Evaluation:
Vii(s) =0 (VseS)
Vi'(s) = By P(s,m(s,t),8') » (R(s, 7 (s, 1), 8) + VL1 (5))

Continuous

Value Iteration: Policy Evaluation:

V*(s) = m(?xz P(s,a,s) [R(s, a,s') + 'yV*(s')] V™(s) = B P(s,7(s),8") * (R(s,m(s),5") +7* V"(s))

Other Resources

* Book on reinforcement learning by Barto and Sutton

e Github repo with well-written tutorials on RL with code and
demos from Tim Miller, University of Queensland
* https://gibberblot.github.io/rl-notes/single-agent/value-
iteration.html
* David Silver’s lecture series (DeepMind)
* https://www.youtube.com/watch?v=lfHX2hHRMVQ

* Pieter Abbiel’s course (Berkeley)
* https://www.youtube.com/watch?v=2GwBez0D20A

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=2GwBez0D20A
https://www.youtube.com/watch?v=2GwBez0D20A

3
{
Y
{
!

cgesere O

e

