CS395T: Foundations of Machine Learning for Systems Researchers

Fall 2025

Lecture 6:

Reinforcement Learning & Markov Decision Processes (MDPs)

Reinforcement Learning

Standard presentations: agent takes actions and is rewarded by environment; like training a dog

Our view:

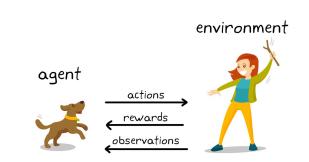
Optimal control: sequence of actions under uncertainty to reach a goal while optimizing some objective function

Example: moon shot vs. gun shot

- · Goal: reach the moon
- · Burn minimal amount of fuel
- Uncertainty: imperfect modeling of rocket, gravitation, etc.
- Solution: series of mid-course corrections

Reinforcement learning:

- Optimal control when you have little to no knowledge of the dynamics of system (not even Newton's Laws or gravitation!)
- However, you are allowed to perform many experiments to build a working model of the dynamics



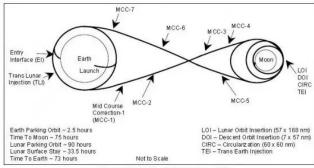
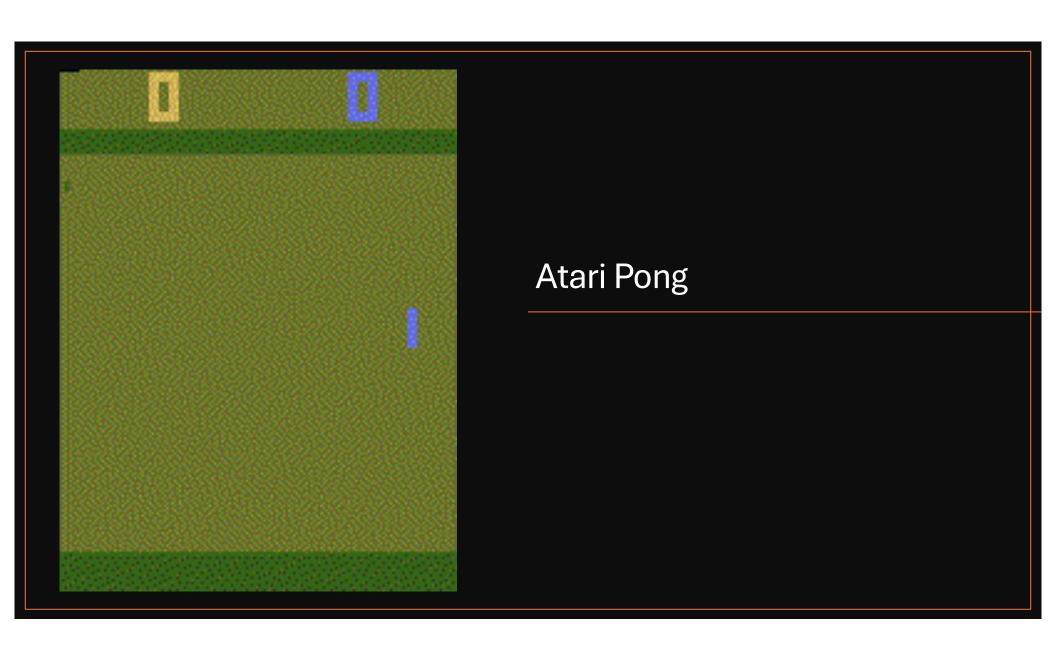
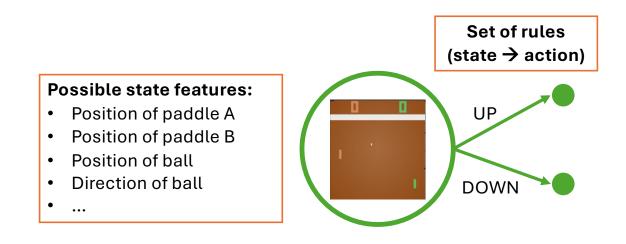


Figure 4. Nominal Apollo 13 mission profile.12



Traditional program to play Pong



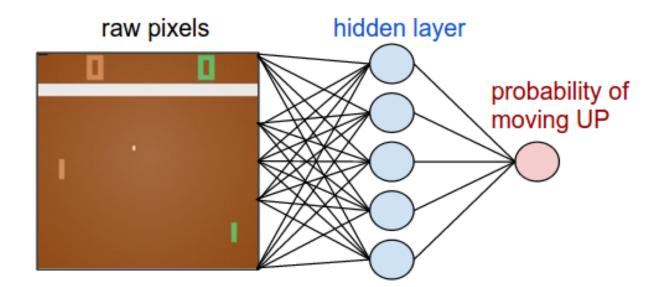
State transition system

Need to design set of state features

Designing action rules requires knowledge of collision dynamics

Solving Pong with NNs

Pong from Pixels (Andrej Karpathy) – Pong in <150 LOC



Organization

Background: Discrete-time Markov process

Markov Decision Processes (MDP):

- Adds actions and rewards to Markov process model
- Key abstraction for RL

Time horizon

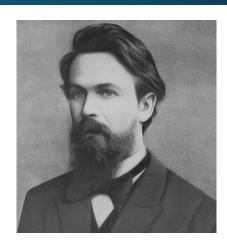
- Episodic task: agent stops after H time steps
- · Continuous tasks: no termination

Policy and policy optimization

- Policy tells agent what action to take at each step
- · Policy optimization problem: what policy maximizes expected reward?

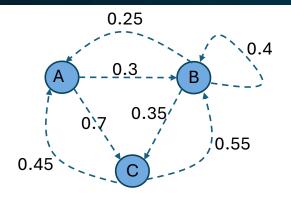
Solving policy optimization

- Value iteration: dynamic programming, Bellman iteration
- Policy iteration: search over space of policies
- Easy to understand if we use MDP transition diagrams



Andrei Markov (1856-1922)

Discrete-time Markov Process

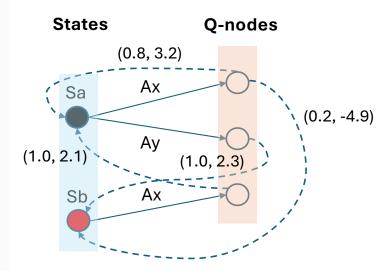


$$\mbox{Transition matrix T = } \begin{pmatrix} 0.0 & 0.3 & 0.7 \\ 0.25 & 0.4 & 0.35 \\ 0.45 & 0.55 & 0.0 \end{pmatrix} \begin{array}{c} \mbox{A} \\ \mbox{B} \\ \mbox{C} \\ \end{array}$$

- Set of agent states: {A,B,C}
- Discrete-time
- Agent starts in some state and makes transitions probabilistically between states at each time step
 - Markovian: transition probabilities depend only on current state
- Transition matrix T(i,j) = probability of transition from state i to state j
- Tk: transition probabilities after k steps

Markov Decision Process (MDP)

- Adds actions and rewards to Markov processes
- In each state, agent performs action, and transitions to another state probabilistically
- Probabilistic transitions model effect of environment on outcome of action (e.g. wind)
- Reward for transitions
- **Policy** π : what action to take at each step
- Optimal policy maximizes expected reward for task
 - **Policy optimization:** find optimal policy π^*



States $S = \{Sa, Sb\}$

Actions $A = \{Ax, Ay\}$

Q-nodes: S x A (<state, action> pairs,

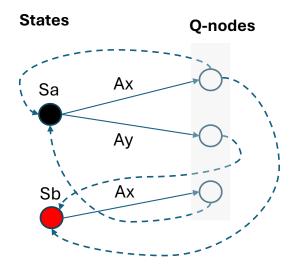
used for book-keeping)

Transition edges: dotted edges (labeled

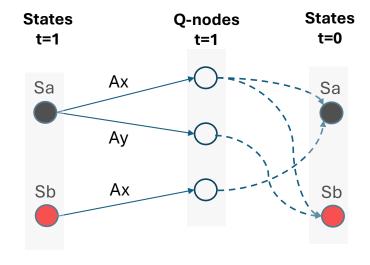
by probability and reward)

MDP Transition Diagram

Markov Decision Process



MDP Transition Diagram (one-step)



Game plan for policy optimization

Tasks:

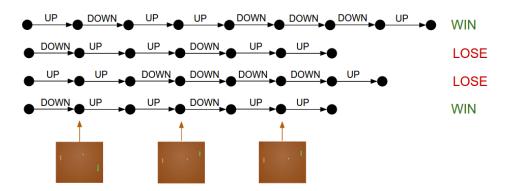
Episodic tasks: H = 1

Episodic tasks: $\infty > H > 1$

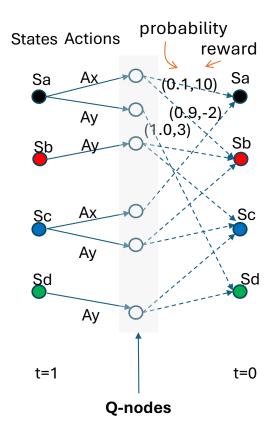
Continuous tasks: $H = \infty$

Algorithms:

Value iteration Policy iteration

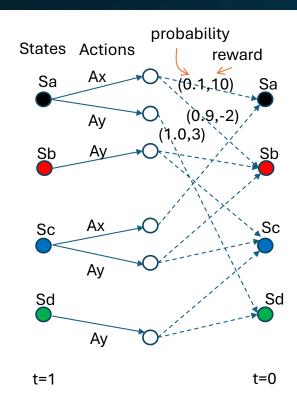


MDP Example: H = 1



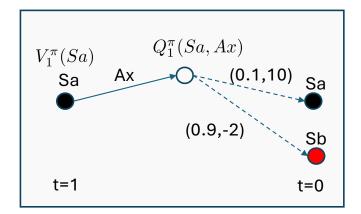
Policy π : $S \rightarrow A$

Policy optimization by searching policy space



- Example: focus on Sa (other states similar)
 - Policy π_1 : at Sa, take Action Ax
 - Expected reward = (0.1*10+0.9*(-2)) = -0.8
 - Policy π_2 : at Sa, take Action Ay
 - Expected reward = 1.0*3 = 3
 - Policy π_2 is optimal
- In general
 - Policy iteration
 - Finite number of policies: |A||S|
 - Search space of policies
 - Policy evaluation: how good is a given policy?
 - · Compute expected reward

Terminology



We are computing a *valuation* $V_1^{\pi}(Sa)$ Time-step

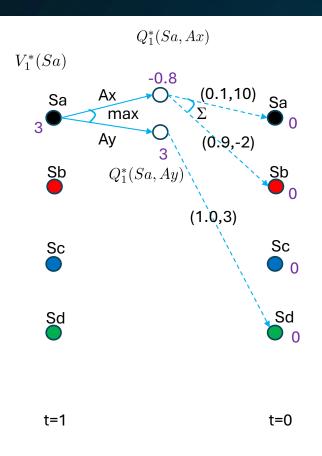
- Expected reward at Sa at time 1 under policy $\boldsymbol{\pi}$

 V_1^* (Sa): Valuation under optimal policy (= 3.0 for our problem)

Policy

Notation extends to Q-values: $Q_1^{\pi}(Sa,Ax)$

Another solution: Value iteration (Expectimax)



Bottom-up propagation of values

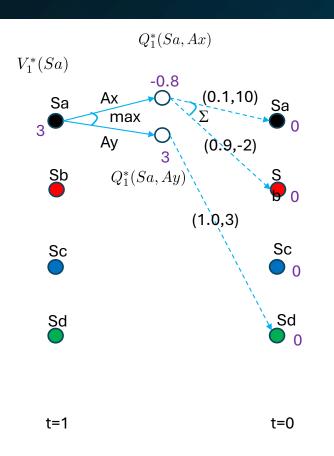
- Boundary (t=0) node values = 0
- Transfer functions on (state x action → state) edges
 - · Add expectation to boundary value
- Confluence operator at Q-nodes: sum
- · Confluence operator at states: max

If terminal states have rewards

• Use those values as boundary node values

Optimal policy: read off from Q values Like minimax in game trees

Putting it all together (H=1)



Value iteration:

$$V_0^*(s) = 0 \quad (\forall s \in S)$$

$$Q_1^*(s, a) = \sum_{s'} P(s, a, s') * (R(s, a, s') + V_0^*(s'))$$

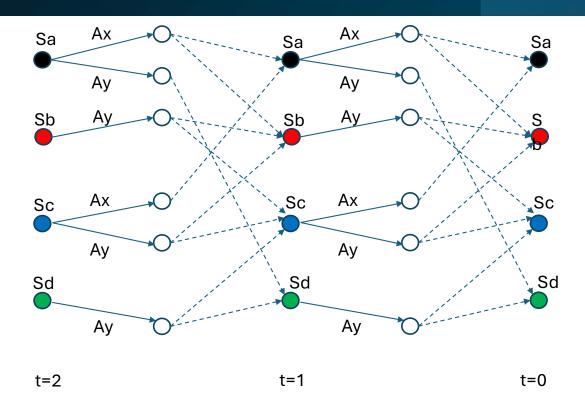
$$V_1^*(s) = \max_a Q_1^*(s, a)$$

Policy evaluation: $\pi: S \to A$

$$V_0^{\pi}(s) = 0 \quad (\forall s \in S)$$

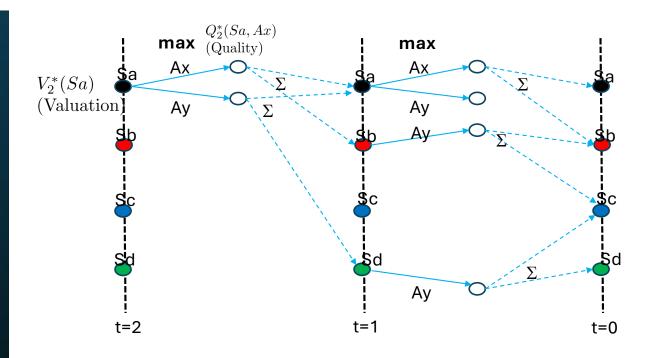
$$V_1^{\pi}(s) = \Sigma_{s'} P(s, \pi(s), s') * (R(s, \pi(s), s') + V_0^{\pi}(s'))$$

Multiple time-steps: ideas carry over in obvious way



Policy: $S \times T \rightarrow A$ (system is still Markovian!)

Value Iteration (H=finite)

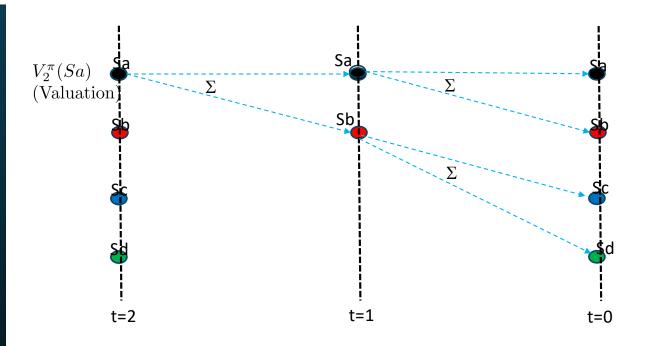


Bottom-up computation in transition diagram

$$\begin{array}{ll} V_0^*(s)=0 & (\forall s\in S)\\ Q_t^*(s,a)=\Sigma_{s'}P(s,a,s')*(R(s,a,s')+V_{t-1}^*(s'))\\ V_t^*(s)=max_a\ Q_t^*(s,a) \end{array} \qquad \begin{array}{l} \text{Dynamic}\\ \text{Programming}\\ \text{(Bellman)} \end{array}$$

Read off optimal policy from Q*-values

Policy Iteration (H=finite)



Search over set of policies: |A||S|XH

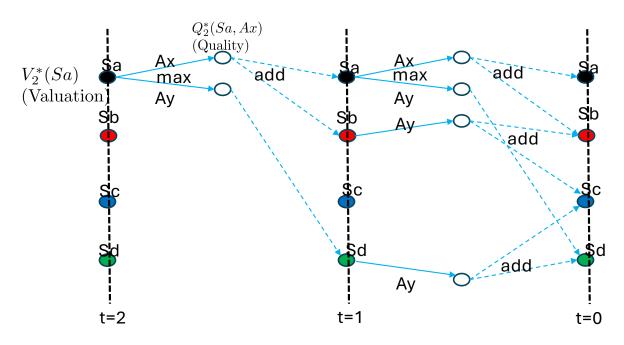
Policy evaluation: π : SxT \rightarrow A

• Specialization of value iteration for action $\pi(s,t)$

$$V_0^{\pi}(s) = 0 \quad (\forall s \in S)$$

$$V_t^{\pi}(s) = \sum_{s'} P(s, \pi(s, t), s') * (R(s, \pi(s, t), s') + V_{t-1}^{\pi}(s'))$$

Discount



Future rewards are discounted by a factor of $0 \le \gamma < 1$ for each time step

Value iteration:

$$V_0^*(s) = 0 \quad (\forall s \in S)$$

$$Q_t^*(s, a) = \sum_{s'} P(s, a, s') * (R(s, a, s') + \gamma * V_{t-1}^*(s'))$$

$$V_t^*(s) = \max_a(Q_t^*(s, a))$$

Continuous Tasks

Infinite time horizon: agent performs actions indefinitely (H $\rightarrow \infty$)

Policy π : S \rightarrow A

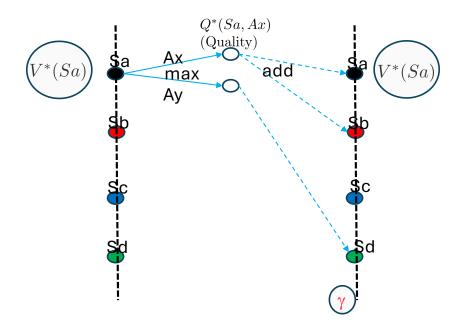
- Action at state is not time-dependent since time is unbounded and system is Markovian
 - Compare with episodic tasks: π : SxT \rightarrow A
- Finite number of policies: |A||S|

Discount: $0 \le \gamma < 1$

Intuition for valuations:

- Unbounded number of unbounded paths from each state
- Each (unbounded) path has a finite total discounted reward
 - Assume there is a maximum one-step reward (R_{max})
 - Discount gives you an upper bound on total discounted reward of path $(\frac{R_{max}}{1-\gamma})$

Value Iteration (H = ∞)



Fixpoint equation:

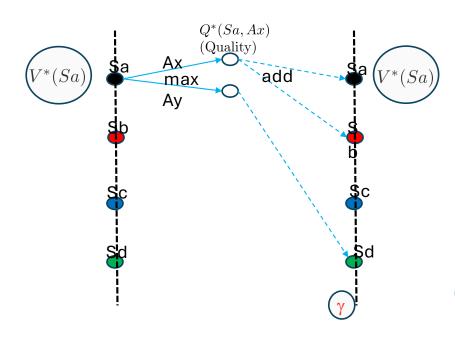
$$V^*(s) = \max_a \sum_{s'} P(s,a,s') \Big[R(s,a,s') + \gamma V^*(s') \Big]$$

- Does it have a solution? Unique solution?
 If so, how do we compute it?
 - Use Banach-Cacciopoli fixpoint theorem

$$V^*(s) = \max_a \sum_{s'} P(s,a,s') \Big[R(s,a,s') + \gamma V^*(s') \Big]$$

Contraction operator $\underline{V} \rightarrow \underline{V}$ in $(\mathfrak{R}^n, maxnorm)$ where n = #states

Value iteration: solving fixpoint equation



• Fixpoint equation:

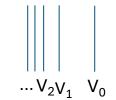
$$V^*(s) = \max_a \sum_{s'} P(s,a,s') \Big[R(s,a,s') + \gamma V^*(s') \Big]$$

• Iterative solution: perform value iterations to convergence

$$V_0(s) = arbitrary \ value \quad (\forall s \in S)$$

$$Q_t(s, a) = \Sigma_{s'} P(s, a, s') * (R(s, a, s') + \gamma * V_{t-1}(s'))$$

$$V_t(s) = max_a(Q_t(s, a))$$



Policy Iteration ($H = \infty$)

Policy iteration

Policy evaluation $\pi: S \to A$

System of linear equations

$$V^{\pi}(s) = \sum_{s'} P(s, \pi(s), s') * (R(s, \pi(s), s') + \gamma * V^{\pi}(s'))$$

Solve using direct methods like LU factorization or iterative methods

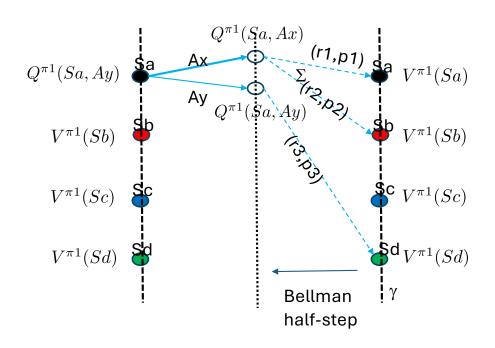
$$V_0^{\pi}(s) = arbitrary \ value \quad (\forall s \in S)$$
$$V_t^{\pi}(s) = \sum_{s'} P(s, \pi(s), s') * (R(s, \pi(s), s') + \gamma * V_{t-1}^{\pi}(s'))$$

Improving efficiency of policy iteration: can we avoid evaluating every policy in space of policies?

Policy improvement

- Intuition: greedy improvements to current policy
- Will find optimal policy without searching entire policy space

Policy Improvement



Given policy $\pi 1$, compute $V^{\pi 1}$ by solving linear system

Take "Bellman half-step" and compute associated $Q^{\pi 1}$ values

At each state Sa, examine $Q^{\pi 1}$ (Sa,*) values to see if switching to another action improves value of Sa "locally"

- If switching does not improve value of any state, $\pi 1$ is optimal policy
- Otherwise switch to better action at one or more states (call resulting policy $\pi 2$), compute $V^{\pi 2}$ and repeat

Guarantee: procedure terminates and finds optimal policy

 Each switch finds strictly better policy and set of policies is finite

Summary

H=1

Value Iteration:

$$V_0^*(s) = 0 \quad (\forall s \in S)$$

$$Q_1^*(s, a) = \sum_{s'} P(s, a, s') * (R(s, a, s') + V_0^*(s'))$$

$$V_1^*(s) = \max_a Q_1^*(s, a)$$

Policy Evaluation:

$$V_0^{\pi}(s) = 0 \quad (\forall s \in S)$$

$$V_1^{\pi}(s) = \sum_{s'} P(s, \pi(s), s') * (R(s, \pi(s), s') + V_0^{\pi}(s'))$$

H=finite

Value Iteration:

$$V_0^*(s) = 0 \quad (\forall s \in S)$$

$$Q_t^*(s, a) = \sum_{s'} P(s, a, s') * (R(s, a, s') + V_{t-1}^*(s'))$$

$$V_t^*(s) = \max_a Q_t^*(s, a)$$

Policy Evaluation:

$$V_0^{\pi}(s) = 0 \quad (\forall s \in S)$$

$$V_t^{\pi}(s) = \Sigma_{s'} P(s, \pi(s, t), s') * (R(s, \pi(s, t), s') + V_{t-1}^{\pi}(s'))$$

Continuous

Value Iteration:

$$V^*(s) = \max_a \sum_{s'} P(s,a,s') \Big[R(s,a,s') + \gamma V^*(s') \Big]$$

Policy Evaluation:

$$V^{\pi}(s) = \Sigma_{s'} P(s, \pi(s), s') * (R(s, \pi(s), s') + \frac{\gamma}{\gamma} * V^{\pi}(s'))$$

Other Resources

- Book on reinforcement learning by Barto and Sutton
- Github repo with well-written tutorials on RL with code and demos from Tim Miller, University of Queensland
 - https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
- David Silver's lecture series (DeepMind)
 - https://www.youtube.com/watch?v=lfHX2hHRMVQ
- Pieter Abbiel's course (Berkeley)
 - https://www.youtube.com/watch?v=2GwBez0D20A

